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Abstract

The tapeworm Taenia solium is the parasite responsible for neurocysticercosis, a neglected

tropical disease of public health importance, thought to cause approximately 1/3 of epilepsy

cases across endemic regions. The consumption of undercooked infected pork perpetuates

the parasite’s life-cycle through the establishment of adult tapeworm infections in the com-

munity. Reducing the risk associated with pork consumption in the developing world is

therefore a public health priority. The aim of this study was to estimate the risk of any one

pork meal in western Kenya containing a potentially infective T. solium cysticercus at the

point of consumption, an aspect of the parasite transmission that has not been estimated

before. To estimate this, we used a quantitative food chain risk assessment model built in

the @RISK add-on to Microsoft Excel. This model indicates that any one pork meal con-

sumed in western Kenya has a 0.006 (99% Uncertainty Interval (U.I). 0.0002–0.0164) prob-

ability of containing at least one viable T. solium cysticercus at the point of consumption and

therefore being potentially infectious to humans. This equates to 22,282 (99% U.I. 622–

64,134) potentially infective pork meals consumed in the course of one year within Busia

District alone. This model indicates a high risk of T. solium infection associated with pork

consumption in western Kenya and the work presented here can be built upon to investigate

the efficacy of various mitigation strategies for this locality.

Author summary

Taenia solium is a serious zoonotic helminth which is thought to be responsible for appro-

ximately 1/3rd of epilepsy cases in the developing world. The work presented in this paper

aimed to understand what the risk is of acquiring T. solium taeniosis from pork slaugh-

tered and consumed in western Kenya. In order to do this we built a stochastic risk assess-

ment model to investigate the safety of pork reaching the consumer in terms of the risk of

having viable T. solium cysts in any one portion of meat consumed. We found that pork
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represents a high risk product in this study area and therefore control strategies are

urgently needed to reduce the public health risk posed by this product.

Introduction

The zoonotic tapeworm Taenia solium, has a two host life cycle, with humans as the definitive

host, and pigs as an intermediate host. Humans are infected after consumption of viable cysti-

cerci in under-cooked pork and harbour the adult tapeworm, a condition known as taeniosis.

Gravid proglottids, containing thousands of infective eggs, detach from the adult tapeworm

and are excreted in faeces in an intermittent fashion [1]. Ingestion of these eggs, by either pigs

or humans, results in the larval stage penetrating the intestinal wall, moving through the

lymph and blood vessels to encyst in muscle, eyes or the central nervous system (CNS) as cysti-

cerci [2].

Infection of the central nervous system, neurocysticercosis (NCC), manifests predominately

as epileptic seizures and is thought to be responsible for 29.0% (95% C.I. 22.9–35.5%) of epi-

lepsy cases across endemic regions [3]. Due to the highly clustered nature of the parasite the

proportion of people with epilepsy (PWE) suffering from NCC will likely be highly variable

both between and within individual countries as illustrated by data from Tanzania suggesting

that between 7.7% (95% C.I. 1–25) and 23% (95% C.I. 15–31) of epilepsy cases are NCC-associ-

ated depending on the geographical location [4]. Understanding the burden of NCC related

epilepsy in individual countries requires data on the prevalence of both epilepsy and NCC

within those countries, data which is currently lacking in many instances [3, 5]. A recent meta-

analysis estimated the overall prevalence of circulating T. solium antigens in humans of 7.30%

(95% CI [4.23–12.31]) for sub-Saharan Africa [6] and it has been estimated that 0.95–3.08 mil-

lion people in sub-Saharan Africa may suffer from NCC-related epilepsy [7].

T. solium cysticercosis has been identified as an important disease predominately in Latin

America [8], Asia [9] and across much of Africa [6, 10] although the nature of global travel

and migration puts individuals from all countries at risk of infection. This is highlighted by

cases of NCC being diagnosed in the United States, predominately in immigrants from Latin

America with histories indicating that infection was acquired from endemic areas [11–13].

People travelling from endemic areas harbouring T. solium taeniosis, can in turn expose many

other people to T. solium eggs, who may develop NCC. A well-known example of this was the

detection of NCC in members of an Orthodox Jewish community in NYC, the likely source of

infection in these cases was believed to be domestic staff originating from endemic areas [14].

In 2012 T. solium was ranked by FAO as the most important parasitic food safety issue globally

[15] and the WHO Foodborne Disease Epidemiology Reference Group (FERG) estimates that

it is the foodborne parasite with highest global burden [16]. Better understanding the risk of

transmission in the food chain is therefore a priority.

The estimated global burden of cysticercosis has recently been revised, and the parasite is

thought to be responsible for a global total of 2,788,426 (95% C.I. 2,137,613–3,606,582) disabil-

ity adjusted life years (DALYs), annually [16]. The burden of this disease lies disproportionally

on developing nations, and even more so those with large rural populations and in which treat-

ment for NCC may be lacking; in Cameroon, for example, the burden was estimated to be

45,838 (95% C.I. 14,108–103,469), equating to 9 DALYs per 1000 person years [5]. It is unclear

whether this is due to high NCC-associated mortality in Cameroon compared to that in other

countries or represents an over-estimation by the authors. [17]. In Tanzania, it was recently

estimated that 0.7 DALYs are lost per 1000 person-years [4] in comparison with an estimate
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0.25 DALYs lost per 1000 person-years in Mexico where NCC patients are five times more

likely to receive treatment [17]. In Nepal it is estimated that 0.543 (95% C.I. 0.207–1.0543)

DALYs are lost per 1000 person years [18]. In the majority of cases, the only NCC-associated

sequela considered in DALY calculations to date has been epilepsy, while severe headache was

also included in Mexico [4, 5, 17, 18]. Despite the inclusion of headaches in the Mexico study,

other manifestations such as: headache, visual disturbances, other signs of increased intra-cra-

nial pressure, cranial nerve palsy, gait abnormality, various focal neurological deficits, altered

mental state and pyramidal (upper motor neuron damage) signs [19] have not yet been widely

included in DALY calculations due to the lack of good estimates of the proportion of these spe-

cific manifestations attributable to NCC. All DALY calculations performed for NCC are there-

fore likely to be underestimations.

The consumption of undercooked, infected pork is a major risk factor for acquiring taenio-

sis. Taeniosis, in turn represents an important public health hazard, with an adult T. solium
carrier becoming a focus of infection for both porcine and human cysticercosis [20]. Indeed

the consumption of pork [21] and the inability to recognise infected meat [22] are two risk

factors which have been significantly associated with human cysticercosis. Other statistically

significant risk factors identified in a systematic review from endemic zones (Africa, Latin

America and Asia) were; insufficient latrines, history of taeniosis or proximity to carriers,

being male and of increased age, lack of potable water, poor personal and house hygiene

including washing hands by ‘dipping’, earthen floor, pig owning and/or the presence of

infected pigs and low education [6].

Addressing porcine infection and reducing the volume of infected meat entering the food

chain is therefore an important issue for public health practitioners in order to reduce the bur-

den of this neglected tropical disease. A process of risk analysis, whereby risks are identified

and described, qualitatively and/or quantitatively assessed and then communicated and miti-

gated, can achieve understanding of the current risks posed by pork consumption in develop-

ing countries.

The principal of risk analysis allows scientific, justifiable and transparent decisions to be

made regarding the risks associated with food products and is a key component of the Codex

Alimentarius framework. Codex Alimentarius is a joint FAO/WHO Commission whose role

is to protect consumer safety in its member states in such a way that trade can be conducted in

an environment where consistent food safety standards are enforced for all countries, remov-

ing the potential for non-tariff barriers to trade [23]. A stochastic, quantitative risk assessment,

as part of a risk analysis process, allows us to incorporate quantitative data and the uncertainty

and variability that surrounds these data, in order to establish a quantitative estimate of risk

and a probability interval around that estimate.

The aim of the work presented here was to estimate the risk to humans of exposure to T.

solium from pork currently entering the food chain in rural western Kenya. We specifically

sought to estimate the probability of any one pork meal consumed in western Kenya contain-

ing at least one viable, and therefore potentially infective, T. solium cyst. To this end a stochas-

tic risk assessment model with Monte Carlo simulation was built and informed by data

gathered in the field in western Kenya and supplemented by data available in the literature

Materials and methods

Ethics

Ethical approval for aspects of field data collection pertaining to humans was granted in

March 2010 by the Kenya Medical Research Institute (KEMRI) Ethical Review Committee

(SSC No.1701) and all activities were undertaken in accordance with the approved protocols.

Risk of T. solium exposure from pork
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Once entered into the study every participant was identified by a unique identifying num-

ber and never by name, hence ensuring anonymity of all data. Prior to any data collection each

human participant in the study was required to sign, or mark with a thumb print, an informed

consent document. This document, including the provision of a thumb print in place of a sig-

nature, and its administration by trained staff, was approved by the KEMRI Ethical Review

Committee. The steps before signing the informed consent document involved ascertaining

the appropriate language for communication, an explanation of the project, the sampling pro-

cedure and emphasising that participation was entirely voluntary. One copy of the completed

form was retained by the project and one copy was provided to the participant.

Ethical approval for sample collection from animals was granted by the Animal Welfare

and Ethical Review Body (AWERB) at The Roslin Institute, University of Edinburgh (approval

number AWA004 Bronsvoort). Sampling of privately owned domestic pigs presented to

slaughter houses was carried out by trained veterinarians or animal health assistants after

obtaining verbal informed consent from the owners of those pigs. Blood sampling from the

cranial vena cava was undertaken according to the guidelines provided by the National Centre

for the Replacement, Refinement and Reduction of Animals in Research (http://www.nc3rs.

org.uk/bloodsamplingmicrosite/page.asp?id=346).

Risk question

A stochastic risk assessment model was built to answer the following question: “What is the

risk that any one pork meal consumed in western Kenya contains at least one viable cysticercus

of Taenia solium?”

Risk assessment model

A stochastic risk assessment model using Monte Carlo simulation was built using the @Risk

(Palisade, Newfield, NY, USA) add-on for Excel (Microsoft corp. USA) which can be found in

supporting information S1 and is illustrated in Fig 1.

The probability of any one pork meal being infective at the point of consumption was esti-

mated using a decision tree method which comprehensively included 15 possible field situa-

tions, described as conditional probabilities) through which a pork meal could ‘move through’

the food chain from pig to plate. Where pigs are informally slaughtered the probability of the

situation is defined as the distribution of infection (including no-infection) conditional on the

pig being informally slaughtered. Where the pigs are slaughtered formally the probability of

detection of infection at meat inspection is included. The 15 situations are defined as follows;

Situation 1 = Pig is not detected at meat inspection |� pig being lightly infected | Pig is for-

mally slaughtered

Situation 2 = Pig is detected and condemned at meat inspection | lightly infected | Pig is for-

mally slaughtered

Situation 3 = Pig is not detected at meat inspection | moderately infected | Pig is formally

slaughtered

Situation 4 = Pig is detected and condemned at meat inspection | moderately infected | Pig

is formally slaughtered

Situation 5 = Pig is not detected at meat inspection | heavily infected |Pig is formally

slaughtered

Situation 6 = Pig is detected and condemned at meat inspection | heavily infected | Pig is

formally slaughtered

Situation 7 = Pig is not detected at meat inspection | very heavily infected |Pig is formally

slaughtered

Risk of T. solium exposure from pork
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Situation 8 = Pig is detected at meat inspection and condemned | very heavily infected | Pig

is formally slaughtered

Situation 9 = Pig is not detected at meat inspection | uninfected | Pig is formally slaughtered

Situation 10 = Pig is detected and condemned at meat inspection (false positive) | unin-

fected | Pig is formally slaughtered

Situation 11 = Pig is lightly infected | Pig is informally slaughtered

Situation 12 = Pig is moderately infected | Pig is informally slaughtered

Situation 13 = Pig is heavily infected | Pig is informally slaughtered

Situation 14 = Pig is very heavily infected | Pig is informally slaughtered

Situation 15 = Pig is uninfected | Pig is informally slaughtered
� conditional on

With the probability (Pr) of each situation being calculated as;

Pr(situation x) = (Pr (slaughter status)�Pr (Infection status)�Pr (intensity of infection)�Pr

(detection status at meat inspection))

The risk of any one pork meal being potentially infective at consumption is expressed as;

Fig 1. Structure of risk model

doi:10.1371/journal.pntd.0005371.g001

Risk of T. solium exposure from pork
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Pr(any one pork meal is infective at consumption) = ((Pr(pork meal contains a cyst | Situa-

tion 1)�Pr(Situation 1) + Pr(pork meal contains a cyst | Situation 2)�Pr(Situation 2)+ Pr(pork

meal contains a cyst | Situation 3)�Pr(Situation 3). . .. . . + Pr(pork meal contains a cyst | Situa-

tion 15)�Pr(Situation 15))�Pr(any one cyst is viable prior to cooking))� Pr(Meal undercooked)

Briefly this illustrates that the overall probability that any one pork meal is infective at the

point of consumption is calculated through the probability of a meal containing a cyst (viable

or degraded) given any of the 15 situations described is multiplied by the probability of that

situation. These calculations are repeated for each of the 15 situations. The sum of these proba-

bilities is then multiplied by the probability that any one cyst in any meal is viable prior to

cooking to give the probability of any one pork meal being infective prior to cooking. This

probability is then multiplied again by the probability of a meal being undercooked in the

western Kenya context to give an overall probability of any one pork meal being infective at

the point of consumption.

We used the ‘Auto’ function in @Risk, a function which runs sufficient iterations, to a maxi-

mum of 50,000, until all input parameters have converged, using the default settings of 3% tol-

erance and 95% confidence, i.e. when there is a 95% probability that the mean of the tested

output is within +/-3% of its “true” expected value, based upon the accumulated data from the

iterations already run.

To estimate the total number of potentially infective pork meals consumed in the course of

one year within Busia District the following equation was included in the model:

Number of potentially infective pork meals consumed per annum (Busia County) = Pr

(meal infective) � (number of pork meals consumed per year)

Where:

Number of pork meals consumed per year = (number of people consuming pork daily
�365) + (number of people consuming pork weekly �52) + (number of people consuming pork

monthly�12) + (number of people consuming pork yearly �1) + (number of people consuming

pork on special occasions �0.5)

Where the number of people consuming pork (daily/weekly/monthly/yearly/special occa-

sions) = population of Busia county (Model parameter P20) � proportion of population con-

suming pork (daily/weekly/monthly/yearly or on special occasions) (Model parameter P21-

25).

Model parameters

The parameters of each model input are described fully in Table 1. Beta-PERT distributions

were used for the prevalence of porcine cysticercosis in the porcine population, the proportion

of pigs slaughtered informally, the proportion of pigs suffering from infections of varying

intensity and the proportion of pork meals eaten undercooked. Beta-PERT distributions have

been recommended for providing a natural distribution from expert opinion of the minimum,

maximum and most likely values of an input and are bound between 0 and 1 [24]. PERT

stands for ‘Program Evaluation and Review Technique’ and was a distribution first used for

assessing the development schedule and costs of the Polaris weapons system [25]. The distribu-

tion is unimodal, continuous and has two non-negative x-axis intercepts which make it suit-

able for the data being modelled in this study [26]. The distribution was determined using the

‘Beta-PERT’ function, method = ‘Vose’ in the package “Prevalence” [27] for R [28]. The Beta-

PERT methodology allows one to parametrize a generalized Beta distribution based on expert

opinion regarding a pessimistic estimate (minimum value), a most likely estimate (mode), and

an optimistic estimate (maximum value). The maximum and minimum limits of the distribu-

tions were set using the 99.9% confidence intervals from field data as we felt that ‘true life’ data

Risk of T. solium exposure from pork
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Table 1. Description of model parameters.

Parameter Description Source Probability

(99.9% C.I.)

Distribution(α,

β)

P1 Probability pig was slaughtered informally 3 out of 69 pig owning homesteads practice home slaughter

[38]

0.043 (0.002–

0.187)

Beta-PERT

(1.89,4.11)

P2 Probability pig is infected (formal slaughter) Prevalence of cysticercosis as detected by HP10 Antigen

ELISA adjusted for diagnostic test parameters (Se 89.5%

(95% CI. 82.3–94.2%), Sp 74% (95% CI. 56.6–87.6) [30]

[39]

0.376 (0.238–

0.513)

Beta-PERT

(3.01,2.99)

P3 Probability pig is infected (informal

slaughter)

Literature indicates no significant difference between

prevalence at formal and informal slaughter [40]

0.376 (0.238–

0.513)

Beta-PERT

(3.01,2.99)

P4 Probability pig is lightly infected (<50 cysts)

*
Enumeration of cysts in 31 pigs from Zambia assessed by

carcass dissection. From a random selection of 65 pigs

Light (15/31) Mod (2/31) Heavy (12/31) [41] Heavy

infections then broken into heavy and very heavy infection

on the assumption that lingual palpation detects only very

heavily infected animals [30, 41–45]. Therefore using the

sensitivity of lingual palpation, estimated to be 16.1% (95%

C.I. 5–34%), [43] as a proxy for the proportion of very heavy

infection. indicating 2/31 pigs would fall into the ‘very heavy

category’ [41]

0.484 (0.206–

0.770)

Beta-PERT

(2.87,3.03)

P5 Probability pig is moderately infected

(50>100 cysts)*
0.065 (0.001–

0.331)

Beta-PERT

(1.78,4.22)

P6 Probability pig is heavily infected (100>500

cysts)*
0.387 (0.137–

0.689)

Beta-PERT

(2.78,3.22)

P7 Probability pig is very heavily infected

(>500 cysts)*
0.065 (0.001–

0.331)

Beta-PERT

(1.78,4.22)

P8 Probability infected pig is detected at meat

inspection (as currently performed in the

study area)

Meat inspectors reported no condemnation of carcasses for

any reason during the course of a field survey [39]

0 (0–0.068) Beta-PERT

(1,5)

P9 Probability uninfected pig is detected at

meat inspection (false positive)

0 (0–0.048) Beta-PERT

(1,5)

P10 Mean number of meals per pig Mean dressed weight/pig 22.5kg [46] Assumption of 100g/

person mean portion size

225**

P11 Probability any one meal contains at least

one cyst (lightly infected pig)

1–50 cysts per pig/mean number of meals per pig based on

dissection of the musculature of 6 pigs[47]

Uniform(1,50)

P12 Probability any one meal contains at least

one cyst (moderately infected pig)

51–100 cysts per pig/mean number of meals per pig based

on dissection of the musculature of 2 pigs[45, 47]

Uniform

(51,100)

P13 Probability any one meal contains at least

one cyst (heavily infected pig)

101–500 cysts per pig/mean number of meals per pig based

on dissection of the musculature of 3 pigs [47]

Uniform

(101,500)

P14 Probability any one meal contains at least

one cyst (very heavily infected pig)

501–80340 cysts per pig/mean number of meals per pig

based on dissection of the musculature of 23 pigs [45]

Uniform

(501,80340)

P15 Probability any one meal contains at least

one cysticercus (uninfected pig)

No cysticercus present 0**

P16 Probability any one meal contains at least

one cysticercus (pig detected at meat

inspection and condemned

No carcass present 0**

P17 Probability any one cysticercus is viable Proportion of viable cysticercus in carcasses from 1% to

100% [48, 49]

Uniform(0.01,1)

P18 Probability pork eaten undercooked 98/1386 pork eaters expressed preference for undercooked

pork [38]

7.07 (5.01–

9.61)

Beta-PERT

(2.80,3.20)

P19 Number of pigs slaughtered in Busia

District/Year

21,315 pigs in Busia District [34] Assumption of a complete

turnover of pig population each year Minus a 20% crude

mortality in smallholder grower-finisher systems in Kenya

[50]

21,315**

P20 Estimated population of Busia County 230,253 [30] of which 76.0% report consuming pork [34] 230,253**

P21 Proportion of Busia population consuming

pork daily

15/2116 people reported consuming pork daily [38] 0.007 (0.004–

0.014)

Beta-PERT

(2,2, 3.8)

P22 Proportion of Busia population consuming

pork weekly

345/2116 people reported consuming pork weekly [38] 0.164 (0.143–

0.185)

Beta-PERT

(3,3)

P23 Proportion of Busia population consuming

pork monthly

808/2116 people reported consuming pork monthly [38] 0.382 (0.355–

0.409)

Beta-PERT

(0.5,0.5)

P24 Proportion of Busia population consuming

pork yearly

347/2116 people reported consuming pork yearly [38] 0.164 (0.144–

0.186)

Beta-PERT

(2.9, 3.1)

(Continued )

Risk of T. solium exposure from pork
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from the field would be a more accurate reflection of reality than an ‘expert’ opinion. Uniform

distributions were used for the probability of any one pork meal containing a cyst and the

probability of any one cysticercus being viable reflecting the high degree of uncertainty sur-

rounding these values.

Sources of data

Each parameter in the model was informed either by field data or from the literature where

field data were lacking. Literature used is referenced against the appropriate parameter in

Table 1.

The Kenyan specific field data were obtained from two complementary studies, both under-

taken in the same area of western Kenya, which is representative of the Lake Victoria Basin

ecosystem. The first study was a community based cross-sectional study of humans and their

livestock from 416 randomly selected homesteads between July 2010 and July 2012, during

which questionnaire data were collected on a wide range of homestead and individual level

risk factors for zoonotic disease, including meat preparation [29].

The second study investigated the prevalence of T. solium cysticercosis in 343 pigs slaugh-

tered at registered slaughter premises within the same study site[39]. This study used the HP10

Antigen-ELISA which detects circulating antigen from the parasite with an estimated sensitiv-

ity of 89.5% (95% C.I. 82.3–94.2%) and specificity of 74% (95% C.I. 56.6–87.6%)[30]. Apparent

prevalence of porcine cysticercosis was used to estimate the true prevalence after adjustment

for an imperfect test using the ‘epi.prev’ function. This function uses apparent prevalence, test

sensitivity and test specificity to estimate true prevalence. Confidence intervals for all other

variables were determined using the ‘epi.conf’ function, which calculates the confidence inter-

val for proportions using the method first proposed by Wilson [31]. Both functions are found

in the package ‘EpiR’ [32] within the ‘R’ environment for statistical computing [33].

Sensitivity analysis

A sensitivity analysis was performed to determine the influence of the input parameters on the

main output; the probability that pork meal contains at least one viable cysticercus at con-

sumption. The sensitivity analysis was performed in two stages. Spearman rank order correla-

tion coefficients (ρ values) were calculated and a tornado graph produced. This illustrates the

relationship between each input and the output of interest, with ρ values near 0 illustrating the

input has little effect on the output through to a value at -1 or +1 illustrating that the output is

fully dependent on this input. Key inputs (those with ρ>0.1) were then selected to include in

an advanced sensitivity analysis.

An advanced sensitivity analysis was then performed with 35simulations of 500 iterations,

monitoring the effect of a range of nth percentiles (1%, 5%, 25%, 50%, 75%, 95%, 99%) of the

Table 1. (Continued)

Parameter Description Source Probability

(99.9% C.I.)

Distribution(α,

β)

P25 Proportion of Busia population consuming

pork on special occasions

9/21167 people reported consuming pork only on special

occasions (we assume here an average of once every 2

years) [38]

0.046 (0.035–

0.059)

Beta-PERT

(2.8, 3.1)

*Probabilities scaled (Probability of infection intensity/sum of all infection intensity probabilities) so that no iteration can sum to a probability >1

**fixed variable.

doi:10.1371/journal.pntd.0005371.t001
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probability distributions of each selected input on the mean of the outcome. A sensitivity tor-

nado graph was plotted illustrating the effect of the key inputs on the mean of the output.

Results

Estimated current infection risk from pork consumed in western Kenya

After 5,600 iterations all parameters in the model had converged. The model predicted that

under the current conditions, any one pork meal consumed (after cooking) in western Kenya

has a probability of 0.006 (99% Uncertainty Interval (U.I). 0.0002–0.0164) of containing at

least one viable T. solium cysticercus, and therefore being potentially infective to humans (Fig

2). This equates to 22,282 (99% U.I. 622–64,134 potentially infective pork meals consumed in

the course of one year within Busia District alone with a human population of 230,253 [34].

Meat inspection, as is currently practised in western Kenya is responsible, according to the

model, for avoiding only 1,397 (99% U.I. 5–8,368) potentially infective meals a year. The prob-

ability of each of the 15 situations described within the model (e.g. Situation 1 = Pig is not

detected at meat inspection | lightly infected | Pig is formally slaughtered etc) is reported in

Table 2.

Sensitivity analysis

A tornado graph illustrating the Spearman rank order correlation coefficients can be seen in

Fig 3.

The most influential input was the probability that any one cysticercus is viable (ρ = 0.91),

followed by the probability a pig is infected at formally slaughtered (ρ = 0.16). The 5 inputs

with (ρ>0.1) were selected for inclusion in the advanced sensitivity analysis. This analysis

Fig 2. Relative frequency histogram illustrating risk of any one pork meal being infected with a viable T. solium cysticercus at consumption

doi:10.1371/journal.pntd.0005371.g002
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illustrates the range of potential outputs which could be produced by this model based upon

the cumulative probability of the selected input distributions.

The analysis suggested that with all other parameters fixed, the probability that any one cys-

ticercus is viable (prior to cooking) has the largest effect on the mean output, from a probabil-

ity of a meal consumed containing a viable cysticercus of 0.0002 when the input was fixed at

the 1st percentile to a probability of 0.011 when the input was fixed at the 99th percentile. The

effect upon the outcome of fixing the most influential 5 input variables monitored in the sensi-

tivity analysis at the 1st and 99th percentile can be found in Table 3 and expressed graphically

in Fig 4. The full sensitivity analysis report can be found in supporting information S1.

Discussion

This stochastic risk model has enabled us to express, quantitatively, the risk that pork entering

the food chain in western Kenya poses to consumers in terms of potential for infection with

the zoonotic tapeworm T. solium. It allows us to better understand the risk of exposure to T.

solium in this setting and provides a tool with which the impact and cost-effectiveness of

potential mitigation strategies can be explored. We have attempted to build a simple model

using transparent parameters and drawn from either our own field data or published

literature.

Pork consumed in western Kenya presents a risk to consumers of exposure to T. solium.

With the current input parameters, there is 0.006 (99% U.I. 0.0002–0.0167) probability that

Table 2. Probabilities of each situation described in the model.

Situation Probability 99% Uncertainty

Interval

Situation 1 = Pig is not detected at meat inspection | lightly infected |

Pig is formally slaughtered

0.172 (0.078–0.29)

Situation 2 = Pig is detected and condemned at meat inspection |

lightly infected | Pig is formally slaughtered

0.002 (0.00001–0.0087)

Situation 3 = Pig is not detected at meat inspection | moderately

infected | Pig is formally slaughtered

0.023 (0.002–0.101)

Situation 4 = Pig is detected and condemned at meat inspection |

moderately infected | Pig is formally slaughtered

0.000 (0.000001–0.0026)

Situation 5 = Pig is not detected at meat inspection | heavily infected |

Pig is formally slaughtered

0.138 (0.0545–0.243)

Situation 6 = Pig is detected and condemned at meat inspection |

heavily infected | Pig is formally slaughtered

0.002 (0.00001–0.0074)

Situation 7 = Pig is not detected at meat inspection | very heavily

infected |Pig is formally slaughtered

0.023 (0.002–0.099)

Situation 8 = Pig is detected at meat inspection and condemned | very

heavily infected | Pig is formally slaughtered

0.000 (0.000001–0.0024)

Situation 9 = Pig is not detected at meat inspection | uninfected | Pig is

formally slaughtered

0.592 (0.4620–0.7072)

Situation 10 = Pig is detected and condemned at meat inspection

(false positive) | uninfected | Pig is formally slaughtered

0.005 (0.00003–0.01873)

Situation 11 = Pig is lightly infected | Pig is informally slaughtered 0.008 (0.00087–0.0347)

Situation 12 = Pig is moderately infected | Pig is informally slaughtered 0.001 (0.00007–0.0098)

Situation 13 = Pig is heavily infected | Pig is informally slaughtered 0.006 (0.0007–0.029)

Situation 14 = Pig is very heavily infected | Pig is informally

slaughtered

0.001 (0.00007–0.0103)

Situation 15 = Pig is uninfected | Pig is informally slaughtered 0.027 (0.0034–0.0971)

Sum Situation Probabilities 1.000

doi:10.1371/journal.pntd.0005371.t002
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any one pork meal consumed in western Kenya is infected with a viable T. solium cysticercus,

and is therefore potentially infectious to humans. This equates to approximately 22,000 poten-

tially infectious meals being consumed in Busia district alone in any one year, among a human

population of over 230,000. It must be noted however, that not each potentially infectious

meal consumed will lead to a case of taeniosis. The probability of infection after exposure is

not yet understood and may not be high, if we consider the generally low prevalence of T.

solium taeniosis even in areas known to be endemic for porcine cysticercosis [35].

It is known that the risk of acquiring NCC is increased not only in those who have a history

of an adult T. solium infection [36] but also in those living within the vicinity of a taeniosis

case [13, 20] or coming into contact with infective eggs through food prepared by a T. solium
carrier who fails to adhere to good hygiene practices. The implication of this is that any one

person acquiring an adult T. solium infection has the potential to expose many more people to

Fig 3. Tornado Graph illustrating the Spearman’s rank order correlation co-efficient values for different inputs.

doi:10.1371/journal.pntd.0005371.g003

Table 3. Influence of changes in input parameters from 1st to 99th percentile of probability distribution

upon the mean output probability.

Input parameter (ρ) Mean probability a pork meal contains at least one

viable cysticercus at consumption

1st Percentile of input

distribution

99th Percentile of input

distribution

Probability any one cysticercus was viable

(prior to cooking) (0.88)

0.0002 0.013

Mean number of cysts/meal (heavy infection)

(0.21)

0.004 0.007

Probability a pig is infected at formal slaughter

(0.20)

0.004 0.007

Probability pork eaten undercooked (0.17) 0.005 0.007

Probability that pig was very heavily infected

(0.11)

0.005 0.007

doi:10.1371/journal.pntd.0005371.t003

Risk of T. solium exposure from pork
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the parasite, putting them at risk of NCC. Moreover, individuals with taeniosis provide a

source of infective material that can be consumed by pigs, propagating the parasitic life-cycle.

Consumption of infectious pork products therefore not only puts the consumer at risk for

NCC, but also people around them, therefore it is imperative that the consumption of pork

containing viable cysticerci is prevented. There are several strategies that have been suggested

for the control of T. solium although evidence for their efficacy is still scarce [37]. Work is

ongoing to investigate the cost-effectiveness of several of these strategies in reducing infection

risk utilising the model described here.

While the input parameters for this model were defined using the best data available at the

time, it is important to be explicit about some of the assumptions made. One key assumption

relates to the probability of any one meal containing a viable cyst within the different catego-

ries of infection intensity. It was assumed in this analysis that cysticerci are distributed evenly

throughout the musculature of a pig and therefore the probability of any one meal containing

a cyst was calculated by dividing the range of cyst numbers for each infection category by the

average number of ‘meals’ that one pig can produce (in terms of kg of meat). The reality is

more likely to reflect a more un-even distribution of cysts throughout a carcass, but the ability

to model this was beyond the scope of the data used in this analysis. The proportion of pigs

falling into each infection intensity category was based upon the results of a random selection

of pigs from Zambia (Southern and Eastern Provinces) and we cannot be sure that this can be

translated to this Kenyan population. We do know, however, that these pigs were randomly

selected from a population of slaughter age pigs (1–5 years) in an endemic sub-Saharan coun-

try and we therefore have no reason to believe the infection intensity proportions should be

Fig 4. Sensitivity Tornado Graph illustrating change to the mean (Probability any one meal contains a viable cyst after cooking) related to

changes in percentiles of input distributions

doi:10.1371/journal.pntd.0005371.g004
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different. The probability of any one cysticercus being viable (prior to cooking) was identified

as being the most influential variable in this model through the sensitivity analysis and this is

predominately due to the wide distribution used to parameterise the variable. The variable was

informed by two studies which indicated a large range (1–100%) of viable cysts in carcasses.

There is as yet no data which could be used to better inform this distribution and although dis-

section of larger numbers of pigs may help, differences between pigs in time of age at exposure

or in host-parasite immune-response, mean it may be very difficult to produce a more precise

estimate. The results of this model should therefore be considered with these assumptions in

mind.

A quantitative risk assessment such as that presented here provides a transparent and

reproducible way of assessing the current state of risk from a food product. The presence of T.

solium in the porcine population combined with the poor risk mitigation shown by the pork

industry as presently structured in western Kenya poses a significant public health hazard and

requires a concerted effort by policy makers and other stakeholders to address.

Supporting information
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(XLSX)
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